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ABSTRACT

In this paper we are interested in studying multiple de-

cision procedure for k(k � 2) populations which are themselves

unknown but which one assumed to belong to a restricted family.

We propose to study a selection procedure for distributions

associated with these populations which are convex-ordered with

respect to a specified distribution G assuming there exists

a best one. The procedure described here is based on a statistic

r
T. = 3’ a. X. . for i = 1,. ..,k where X. . is the j—th

1 ) i ; ), f l  1;) , fl

order statistic from F~, r is a fixed positive integer

(1 � r � n), a. gG 1(’~~) — gG ’ (
~
) for j  l,...,r— l

ar = ~~~~ (
~

) and g is the density of G . This statistic

T. was considered by Bar low and Doksum (1972). If G(x) =

i — e~~ for r > o , then nT. = X + ... + X. +
1. i;l,n

(n — r + 1) X. is the total life statistic until r—th

failure from F~ This shows that the procedure based on T.

generalizes Patel’s result (1976) for the IFR family .

The infimum of the probability of a correct selection is

obtained and the asymptotic expression is also obtained using

_ _____ ]
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the subset selection approach. Some other properties of this

procedure are discussed. We also study the asymptotic relative

efficiencies of this rule with respect to some selection proce-

dures proposed by Barlow and Gupta (1969) for the star—shaped

ordered distributions. Gupt a (1963) for the gamma populations

with unknown shape parameters and etc. An example is given to

illustrate the use of the selection procedure for the two inde-

pendent uniform distributions. Application to quanti].e selection

rules for distributions convex ordered with respect to weibull

distribution is given. A selection procedure for selecting the

best population using the indifference zone approach is also

studied.
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SUBSET SELECTION PROCEDURES FOR RESTRICTED

FAMILIES OF PROBABILITY DISTRIBUTIONS

1. Introduction

In many problems, especially those in reliability theory,

one is interested in using a model for life length distribution

which is not completely specified but belongs, for example, to

a family of distributions having increasing failure rate (IFR),

or increasing failure rate on the average (IFRA). Such

distributions form special cases of what are now commonly

known as restricted families of probability distributions.

The idea of using such families stems from the fact that in

many cases the experimenter cannot specify the model

(distribution) exactly but is able to say whether it comes

from a family of distributions such as IFR , IFRA . Families

of probability distributions of these types have been

studied by several authors, see, for example, Barlow, Marshall

and Proschan C4~, Barlow and Proseha n C5 ,6~ and Barlow and

Doksum t l~

In this paper we are interested in studying multiple

decision procedures for k (k�2) populations which are

themselves unknown but which are assumed to belong to a

restricted family. We now give some definitions of interest

to us (see Barlow and Gupta r3~) .
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(i) F is said to be convex with respect to G

(written F ~ G) if and only if G
1
F(x) is

convex on the support of F

(ii) F is said to be star—shaped with respect to G

(written F .< G) if and only if F(O) —G(O) =0
—l *

G F(x) .and is increasing in x � O  on the support

of F

If G(x) = l-e~~ , x~~ O , then F ~ G is equivalent

to saying that F has increasing failure rate (IFR). Again

if G(x) = 1 - e~
C 
, x � 0 , F .< G is equivalent to saying

that F has increasing failure rate on average (IFR.A).

In the statistical literature, selection problems for

restricted families were first investigated by Barlow and

Gupta C3~ . Some further results in this direction and a

review of some important results concerning inequalities

for restricted families and problems of inference for such

families have been given by Gupta and Panchapakesan tlO,ll~

and Patel t l5~~.

In Section 2, we propose and study a subset selection ru le  for

distributions which are 
~c 

ordered with respect to a specified

distribution G assuming there exists a best one. Some

properties of this rule are discussed . The infimum of the

probability of a correct selection is obtained and an

L . 
~~~~
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asymptotic expression is also given. We also study the

asymptotic relative efficiencies of this rule with respect

to some selection procedures. Section 3 deals with selecting

the best population using the indifference zone approach. In

Section 4. we propose a selection procedure for distributions

that are <~~~ ordered with respect to G

2. Selection rules for distributions cc ordered with respect

to a specified distribution G

Before discussing the selection problem , we give some

preliminary known results for sake of completeness. Let Q

be the class of absolutely continuous distribution functions

G on R with positive and r ight—(or  lef t—) continuous density

g on the interval where 0 < G < l  and let ~ be the class of

distribution functions F in Q such that F ( 0 )  = 0 . For

C ~~ , we take G 1
( 0 ) and G~~~( l )  to be equal to the left

hand and right hand endpoints of the support of G. For F E ~J

we define F 1(0) = 0 . For F E 3  and G E Q  • consider the

following transformation (see Barlow and Doksum [1] )

(2 .1)  H~~(t) = ~F t)
g[G~

lp (u))du . O � t � l

where g denotes the density of G

We assume that G is always fixed. Since ( the inverse

of HF ) is strictly increasing on tO.l~ . HF is a
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distribution. Barlow and Dokeum t l~ have shown that

C if and only if HF is convex on the interval where

Since G is assumed known we can estimate H;’ by substituting

the empirical distribution F~ of F ; that is

F 1(t)
(2 .2)  H~~ (t) = ç’(t) = gtG ’F~~(u)~ du

and

(2.3) H~~~(~ ) = j r~ tG~~~ F~~(u ) ] du=~~ ~~~~~~~~~~~~~~~~~~~

where is the i-th order statistic in a sample of size

n from F and X .0 • If G(x) = l-e~~ for x � O , thenO,n
(2.3) can be written as

(2 .4) H ’(L) ~~X + ... +X + ( n - r + l ) X  ~n n n l ,n r—l ,n r,n

We say that X + ... +X +(n-r+ 1)X is the tota l1,n r—l,n r,n
life statistic until r—th failure from F

(A) Selection procedure and its properties

Let 1TV....1~ 
be k populations. The random variable

X~ associated with has distribution function

i — i , 2 , .. ., k , where (i 1, •. .,  k) • Let

denote the cumulative distribution function (c .d.f . )  of

the “beat” population. We assume that (a) F (x) �Ftk~~
(x) for
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all x , i l, ... , k and (b) there exists a distribution

G such that F . < C  , i l , •.., k , where .< denotes a
1 —

partial ordering relation on the space of probability

distributions. We are given a sample of size n from

each , ~~~~~ .... k) • Our goal is to select a subset

from the k populations so as to include the population with

Let n = (F= (Fl....,Fk
) :a a j  such that

F . ( x )  �F) (x) for all x and i 1 , 2 , •.., k) . Let

r
(2.5) P. ~~~~~ a.X. . for i = l , •.., k

1 ~~ )1;j,n
j=l

(2.6) T=Va .Y .
~

where X. . is the j-th order statistic from F.,y. is
1;), fl 1 j,n

the j-th order statistic from G. r is a fixed positive

integer (l~~~r~~ n)

a) = gG 1(~~~) — gG 1(~~) for j 1 ,..., r—1 and ~~~~~~~~~~~~~~

For selecting a subset containing F
tk~ 

, we propose the

selection rule R1 as follows:

R
1
: Select population ,

~~

. if and only if

(2.7) T. � c max T.
3. 1 l�j�~k ~

where c1 
= c1(k,P*,n,

r) is the largest number between 0

and 1 which is determined as to satisfy the probability

requirement
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(2.8) inf P(CS~R ~ ~1

where CS stands for a correct selection, i.e., the selection

of any subset which contains the population with distribution

F . Let T . be associated with F . and let W . (x )
(1) ~~~~~~

be the c.d.f. of T . .
(1)

Lemma 2.1. Let F
1
, F2 

be two distribution functions such

that F1(x) �F 2(x) Yx 
and T1 

=
~~~ 

bjXj;j~~ i l ,2. where

b . > 0  for j c A, 1~c f l ,2,...,n1 and X. .  is the ~—th

order statistic from F ., i = l ,2 , then

P
~ 
T
1 ~~ x~ � P~ P2 ~~~

Proof.

1 if T. �x
Let ~, (X. ,...,X . ) = { 1

•ii in 0 otherwise

where X . ,..., X . are n observations from F. ( i = 1 ,2)
LI. ifl 1

Since $ ~~~~~~~~~~~~~~ is nondecreasing in each of its

arguments. it follows by induction (Lehmann t ll~ P. 1l2 1
~

that

E$ (X~1....1X1~ ) E$ (X21.....X2~ )

That is PCT1
�x~ ~ PtT2

�x~ 
. This proves the lemma.
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W• r~ w stat. and prow, the followinq th.oa ~~ich is sor.

g.n.r.1 than that of Petal ~~~~~

iaor~~~~ .i. If F1 E~~, G~c~~, ?~(z) aI
t~~~

(z) Vz and

G • a~ a 0 for i — l ,2 . . . . , r  • ~~

and • th.n

(2.9) PtcSlRl, a J ’ ~~~~~~ )dO~ (x)
G4(0) 1

where G~ (x) is the c.d.f. of T

Proof. P~CS~ R1~ — PCT (k) �cl~
? (i) . ••~~ •k~•~l~

- 

~ ~~~~ 
(
~~~

)
~~ k (m)

�~~~
I
~~
l(~
L)dWk (z) (~~~I.u 2.l)

— Pt~~ a c1Z~ . j — l . ...
wh.r . Zl.....Zk are i.i.d. with c.d.t. II ~(z)

Let ~ (z) — I ’F
Ck~

(x) . Note that ~ (z) is ao.4.cr.a.inq in

X . Also we can write

(2.10) 
~~~~~~~ i— 1 .... k ,

i—i

wh.r. is the j-th order statistic in a .~~~ l• of aLa.

n from ,

(2.11) Pt7.~ac1 max — Ptcp(t zk
) a •

l~jf.k 1

—~ 
—,~~~~~~~-~ -——
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Since a .  = gG 1(0) < 1 .  a . � 0 Y j = l ....,r • and p(O) ~ 0

j =l
by Lemma 4.1 of Barlow and Proschan t 5~ and (2.10) . then

(2.12)

Since 
~~ 

a � 1 , ~~ ~~a . ;•l for i=l ,...,r • and ~p(O) c 0

by Lemma 4.3 of Barlow and Proschan 5~ and (2 . 10) ,  we have

1 
r

(2.13) 
~~~~

(— z ) � — a~~ (X~* )
c1 k stc1 •L )
i. .L j 1

(2.14) ~p (X~ . ) = Y.• i;),n St i;j,n

where Y. . is the j-th order statistic from G • i 1 , 2 , . . . ,k.
is J • fl

Thus from (2.11), (2.1~ , (2.13), and (2.14),

PrZ . ~c max z.~ �P~ ~~

‘ 

a.Y . �c a .Y .- K 1 .
~ 

. ~ ) k~ j ,n 1 
~~
. j i;j,n

j=1 j=1

i=1 ,2,...,k—1

= S G
~~
’(
~~~

)dG
T
(x)

G 1(0) 1

This completes the proof.

Remark 2.1. C i )  If g is nonincreasing, g(O) ~ g G 
1
(0) ~ 1 and

g ci.l(
r 1
) ~ c ,  then these co~ditions a 11 0 • j  = 1,... ,r, G 1

~0) ~ 0,

l and a
r � cl 

in Theorem 2.1 are satisfied .

(ii) inf P[CSIR1J = 
~~ 

G~~~~ -~-)dG~ (X) if G 1(0) = 0

The constant c
1 

= c1(k,P*
,n.r) satisfying (2.8) is the

largest number between 0 and 1 determined by
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1
(0) 

G~~
1(~~~ )dGT (x) P~ and gG ’(~~~~) �c 1

We now consider two specific distributions G (x )

If G( x) = l~~ e~~ , x~~ O , then we have following result which

slightly generalizes the result of Patel ~~~~~

Corollary 2. 1. If F . ( x ) �F
~.~~

(x) Yx and i = l ...,k

F < G , G( x ) = l - e  , x > O  andc
n�max (r , ~~~~ 

I then
I.

(2.15) Inf PC CSIR1~ 
= T ~~~~(~~)dH(x)b 1

where H(x) is the c .d .f .  of a random variable with

2r d. f .

Proof. If G(x) = l_ e
_
~
C 

then a. = for j 1 2 9 . . . , r — 1

and a
r 

= ~- ( n — r + l )

Also a � 1 iff  n � 
r —1

r 1 — c 1
By Theorem 2.1 and the fact that 2nT is distributed as

with 2r d . f . ,  the result follows .

I f  G ( x ) = x for 0< x< 1 , then we have the following result

which is a special case of Theorem 2 .1 of Barlow and Gupta ~33.

Corollary 2 2 .  If F . (x)  �F
tk ~~

(x) yx and i l . .. , k

F < G and G (x) = x for 0 < x < 1 , then1k)

L .~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(2.16)

irtf P[cs~R 1) = n(~:~)ç [j!r 
(I~)(t)

i
(l t)

r
~~~] 

k_l
x
r_l

(l_x)
n_r

dx

Actually, the condition ~< G in Corollary 2.2 can be

• relaxed to F[ki *

We state and prove the following theorem about the asymptotic

evaluations of the probability of a correct selection associated

with the rule R 1 in the case where r is so chosen that

r � (n + 1)ci < r + 1 • 0 < a < 1 . This amounts to selecting

populations with large values of the a—quantile for a (and r )

as defined above . In this case , -. a as n- .  ~ . Note
n

that the result holds for all a

Theorem 2.2. If F. € ~ , G E ~ for all i = 1. . . . , k and

( i)  F . (x) � F (x) Yx , i = l,...,k • F1~~ 
< G~

(ii)  G (x) has a di f ferentiable density g in a neighbor-

hood of its a—quantile ~ , g ( n )  ~ 0 and G 1(0) ~ 0 , and

(iii) gG 1 is uniformly continuous on ro ,ij, G~~ (x) is

convex and there exists an ~ , 0 < ~ < 1 , such that for ~ � y < 1

and g~~
1(y) 

is nondecreasing in y , then as n -,

(2.17 ) PICSIR 1] 
~ ~: 

1[~~~ + 
1 ~ g(~~ ) (..~~) ½] d~ (x)

where ~ = 1 - ~ and ~(x ) is the standard normal c.d.f.

Proof. Since G 1(x) is convex , we have
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(2.18) Pt CS~ R11 ?~ PtZk~~
c, max Z.~

l~ j~.k ~

where Zl ..., Zk are i.i.d. with c.d.f. w
k(x) and w

k
(x)

is the c . d . f .  of T (k)

• By Theorem ( 2 .2 )  of Barlow and Van Zwet 
~~~~~~ 

and condition

(iii) ,

x -l x -1(2.19) sup~ r g~ G F
t k) f l

(u )
~~

d u_  r g~G Ftk.~
(u)

~
du
~ 
.O a.s

x�O 0 0

where F
rk~ n is the empirical distribution of Frk)

Then we have (see Barlow and Dokswn t 1~)~ . for n large,

(2. 20) Z. ~~Y .
1 st 17r,n

where Y. is the r-th order statistic from H andF

(the inverse of HF 
) is defined in (2 .1).  Now

tk )  —1
.< G 

~ 
H
F 

is convex. Since G (x) is increasing and
L 

~~c ~~~ —lconvex, it follows that G HF (x) is convex. Since

H .< G and G (0) <0 , then 
~F 

.< G . In a manner
tk~~*

similar to the theorem (2 .1) of Barlow and Gupta t 3) . we have

(2.21) P~ Y �c max Y . ) �P~Y~ zc  Y~ , i#k)•1. ..- I • 1,.. I .
‘~~‘ ~ • • , J%~~ • ‘ •

where Y~ is the r-th order statistic from G • i= l ,...,k .
i;r,n

From (2.18) , ( 2 . 2 0 ) ,  (2 . 21) and using the fact that

( 2 . 2 2 )  , ~~~~ )2ng (i~~~)
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the theorem follows.

Before we discuss some properties of the selection rule

R1 , we introduce some definitions (See Santner [16]). For a

given a( 0 < a < 1) , we assume each F . has a unique a—quantile.

Let F . (x) = F • denote the cumulative distribution function
[3. ] [i ]

of the population with i—th smallest a—quantile. Define

= P
F[ii(~~) 

is selected ~R] where is associated with

F .
[1]

Definition 2.1.

Ci) A rule R is strongly monotone in if

when all other components of F are fixed

• P
F
(i) is

— in F~~.~~Cj#i) when all other components of F are fixed.

That means , 
~~~~~~ ~ 

P~~~( i)  when F1 .~ 
~~ 

Ffc.3 and

when F[.] ~~ 
F~~~ for j  ~~ i • where = (F 11 y.• . . Fr j 1 s

Ft (Fcl]s...;F~ i]s. ..s Frk]
) 

‘ 

~2 
= (F

1
1js....

and F~ = (F[ l ] S . . . S F
~~ . ] 5 . . . 5 F [k] )

(ii) A rule R is monotone means

� for all F E c ~ with F
[~~)

(x) � F
1~~~

Cx)

(i i i )  A rule R is unbiased if 
~~~~~ 

� P
F(k) for all

~. E O with F1.~~(x ) � F[k] (x)
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(iv) A rule R is consistent with respect to 0’ means

• inf P1CS~R 1 - l  as n - .~~~~.• 0’

Theorem 2.3. If a. � 0 for i = l,...,r • then R1 is

strongly monotone in

Proof.
1 if P .  � c  max P

Let $(~
) = 

(i)  
l~j~~

• L 0 otherwise

where

It is similar to the proof in Lemma 2.1, we can show that R
1

is strongly monotone in r T ( i )  .

Remark 2.2.

(1) If a rule R is strongly monotone in ¶1
( i)  

for all

i = l,...,k , then R is monotone and Inf P[CSIR] = Inf P[CS1R]

where = = (F
1
, . . . ,F~ ) E ~) : F1 = . . . =

(2) If R is monotone, then it is unbiased.

( 3) If F .(x) = F(x,9.,) , i = l,...,k and T. is a con-

sistent estimator of , then R
1 is consistent with respect

to c~ = [F = (Fl
s...,F

k) : ~ a j such that F . ( x )  � F .(x)

for all x and i = l,...,k)

• ( 4 )  If F .E 3, G E ~~~ , F. .< G • i = 1,... ,k and the condition

(iii) of Theorem 2.2 is satisfied, we can show that

-j
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is consistent.

The selection of the population with largest F.

(i=1 ,...,k) can be handled analogously. We assume

FC.]
(x ) 

~
F
tl)

(x) • i = l , . . . , k  , and F
t1~ 

.< G . The rule

for selecting the population with F
tl) 

is R
2: Select

population i t ,  if and only if

(2.23) c T. ~ mm P.2 i  l�j �k ~

where c2 ( 0 < c 2 �l)  is determined so as to satisfy the

basic requirement. In a manner similar to the proof of

Theorem 2.1, we have

Theorem 2.4.  If F ., G~~ 3 , F~ .](x) ~
F
tl]

(x) yx and

i=1...,k , F ..(0)=0 and F < G and if a.� 0 for
tLL Cl] c

j = l ,...,r , G 1
(0) <0 , gG~~ (O) �l and a � c

2 , then

(2 .24 )  PE CSIR2] 
~ ~—l~~~ 

~~~~ (c 2x)dGT (x)

where GT Cx) = 1 - G
T Cx)

(B) Efficiency of procedure R
1 under slippage configuration.

Under the same notations and conditions of Theorem 2.2 and

the comments above the Theorem 2.2, we consider slippage con-

figuration F1i ] (X) = F(~) , i = l, 2 , .. ., k— 1 , and

F
[k]

(x) = F ( x )  , 0 < 5 < 1 . Let



~ 
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E(S~R) denote the expected subset size using the rule R

Then E(SIR) -PC CSt R) is the expected number of non-best

populations included in the selected subset. For a given

€ >0 , let nR ( c )  be the asymptotic sample size for which

E(S~ R) -P [CS~ R~~= c  . We define the asymptotic relative

• ef f iciency A R E (R ,R*,6 ) of R relative to R* to be the

limit as ~ 4 0  of the ratio i.e. ARE (R ,R* ;6 )  =

lim
• € 40

Under the slippage configuration we have,

(2.25) E (SIR1) =PC CSIR1] + (k—l )PtT(1) �C
1 

max T(•))

If n is large, then from an argument similar to the one

in the proof of Theorem 2.2, we have

(2.26) PCT �max T . 1 
~ 
P~Y �c max Y.)( 1) i~l 

(ir 1 1 i~ 1 1

where 
~l

’•••’
~k 

are independent and is the r—th order

statistic from H
F 

for i l,...,k . The right—hand

side of (2.26) is equal to

(2.27) — a h(a )(l —

c

— a h(a  ) ( l  —

• c
1 

C
1

where c is the constant used in defining ft , a is1 1 a
the (unique) ~ -quantile of HF (x) and h (x )  is the density

tk]
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function of HF (x ) . For k = 2 and n large,
• tk]

A n ½ 6
2 

¼(2 .28) I
~(S IR 1 ) — P ~ CS~ R1~’ (—h(a )a (1 — 

~
—) (—

~~~) Xi. +—
~~~)C

1 ~~~~

I

Let r~ 1
k~ l (.& + (1 -c ),~ g(,.~ ) ~~~~ (

_!L
)

½
)d ,( X )  =—. C

l 1~~~t ~, C
l Q.a

Now, setting the right aide of (2.28) equal to c• and using

2½D 1 ½C
1 
z l-

~
ç- . where D=~ (p*)(a&) /i~~g(1~~) , we obtain

(2.29) 
~~~~~~ ~~

t_ (a )
~~~

_1
(e) (1+e 2 ½ +~/~~D6aa 

h(a )]
2.

C a h 2 (a ) ( 1 _ 6 ) 2
]~~

Comparison with Barlow-Gupta Procedure

Barlow and Gupta C~~~
] propose a procedure R

3 , for the

quantile selection problem of star-ordered distributions

which is .

R
3: Select population IT . if and only if

(2.30) T . � c  max Tr , i 3 . r ,j
l<J �

where c
3 (0< c~ 1) is chosen to satisfy PC CS~R3)�p* and

T . is the r-th order statistic from F . wherer,i 
1

r�(n+l)a < r+l . They derive an expression for 
~R ~~ as

3follows:

~ t _ ( a ~~)~~~
_l

( € ) ( l + 8 2
~~~ + \/~ D6~ fN  )

~~~

2
C~~~

2

~~~

2
(
~~ 

) ( l 8 ) 2
]

_ 1
3 a ~~. a



— -

where f is the density of F with unique a-quantile, r
C’

~
2
f
2
(~

( 2 .31) ARE(R ,R ;6 )  = u r n  1 
=

1 3 t .iO 
~R ~~ a2h2 (a3 a

If G(~~) = , x > 0  and Ft i )
( x )  = i _ e Xl~

6 
and

F 21
(x ) = l ~ e~~ • x . 0 , O ’~ 5~~ 1 , we have ,

(2.32) A RE ( R
1
, R

3
; 6)  = 

(l—a )
2
1~g

2
(1-~ ) <

= 0.4803 ,

Comparison with Gupta Procedure

Gupta t8] gave a selection procedure for gamma populations

I T i ’S with densities r x
a l

e~~
j x - 0, 9. >O , i = l ,2 ... ,k

r (a) e.
The procedure R4 is

R4
: Select population ~i. if and only if

(2.33) X . .~ c max X .
2. 4 .1<j ~k

where X . is the sample mean of size n from ii . and
1 3.

c
4 

is the largest constant (0< c4 
<1) chosen so that

PC CStR4J ~ P*

For k = 2 , 5 and 
~[2] 

1 (see Barlow and Gupta t3]).

we have



10.

fl ( r)

(2.34) ARE(R ,R :6) = lim = 
a(log

~ 4 
~-O ~~~~~~ 2 ( 1—~~) 2

~~~~f ( ’ ) ] 2

It is easy to show that

(2.35) ARE(R
1
,R
4
;6) = ARE(R

1
,R

3
;6)ARE(R

31 R4
;6)

, —  / 2 2
•~a log ~ .J ~~ ~‘1 + ~= 1. ~ (l-6)a h(a

‘1 ft

If G(x) = l _ e X 
for x > 0 and a = l

(2.36) ARE(R
19 R4;~~

) = 
(1—ft)(1+~

2)log26

2(l—~ ) ~

(2.37) ARE (R
1
,R4;?~~l) =

Comparison of R
1 and R

5 from uniform distribution

Suppose and 
~2 

are two independent uniform populations

wi th distribution f unctions F. ( i l,2)

0 x~-0

(2.38) F . (x) 0<x ~~~~.
‘ n . 3.I i

x > ~~ .
\ 1

where S = 
~ ~~~ 

= 1

A sample of n independent observations is drawn from each

of the two populations. Let T~ be the total life statistic

L~~. •--- • - - • • • • • •
~~~~~

• • - - - • •
~~~~~~~~~

..- • •--. • • - - • • • -
~~~~



_ _

until r — L h  failure from IT. (j 1 ,2) where r < (n + 1)~~.-’ r+ 1

The procedure ft
5 

is given by

R
5
: Select population 11 . if and only if

(2.39) T~ � C max T~i 5 . j

where c is chosen so that P[CS~R ] ~~~~~ . Let T* . be
5 5. (i)

associated with B i]

(2.40) E(S~R5
) -Pr CS~R5] =P~

T~ 1) 
?c

5
T~2)1 

=P [T~ �4

where ~~~ T~ are two independent total life statistic until

r-th failure from uniform distribution over (0.1) . By Gupta

and Sobel [12],

T -u
(2.41) 1

.
~ N(0,l) as n4~

where u ~~ (2;-~~n + l ) u ’ = ~~
(2~~I , •~~~~An and

A = 
oil-ni) (2)~~~ +

4 12

Hence fl— = B f ñ  where B = ~ (2-cd . From (2.40), we
I •T Z/A

have

T’ -u ’ c T’ -u ’ c

E(S~R~ — P[CS’R
5] 

= Pt 
1 5( 

2 
+ (—~- — l)~ —]

z2 + (-~~-1)B./i~]



~~ -.,, ~~~~~~~~~ 
.
~~~~~~~~~~~

----- ---— -..-
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where Z
1
, Z

2 
are i.i.d. with N(0,1)

Hence

S
E(SIR5

) -P[CSIR5] 
= ~~t~ — x —  (1 -~~~)Bih]d~~(x )

5 5
-(1 - -~-)~~/i~

= ~r Ju + ~~~~~~ 
]

Let E(S~R5
) — P[CS~ R5] ~ ,0 , we obtain

(2.42) (-i- — = J-~- + -
~~5 5 c
5

Note that

inf P (CSIR ] = P[T’ �c 1~T.’,] , where T’ and T’ are defined as above.5 1 ~~~~ 1 2

P[T~ >cT~~ = p[
j 

~ C
5 
~
T
~~

_

~~~~+ (C
5 
_ 1) J

P[z1 
.c~~ 2 + (c 1. -1)RJn] where Z

1
, Z

2 
are i.i.d. with N(0,1)

Hence
— ( 1  — ) R./n

P[T~?cT~] = r~ ~~~~~~~~ 
x - (1 -~~~)RJñ)d~~(x) = 

~
[ 

~~~~~~~~~~~~~~ 

]
-

~~ 5 5 - f i +~~C
5

Setting inf PCCS1R ] , we obtain
n

-(1 — --
~-)B ’ñ = ~~ 1 ( )  ./1 +

5 C
5

( l - c5
) f ñ  D~~~~~c~ where D

~

—

~

-.- •-~~~~~~~~~•
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We see that c5 
1 - and ~ ~ + ~~~D • From (2.42),

(1 + — 
1) ‘

1((..) j 
+ + +

• P~~~(I ) + ~~~~ D ~ +

Thus

— ~~~ 6~~~
1(p)~~ 2

(2.43) nR
(
~
-) B( 1—~~

)

From (2.29) and (2.43),

nR ~~ — 2
(2.44) A R E ( R

1
,R
5
;6) = u r n  

n 
1
(e) 

= 
2

r-40 R a n (a
5 C’

I f  we assume that G ( x )  = x for 0. x -  1 , then

( 2 . 4 5 )  A R E ( R  R ~~~ 
B
2
(1~~ ) = 

3( l~~~) ( 2~~~) 2 

2 ~ 11 5 a 3 (l—ft) (2—ft) +~

ARE(R19 R5
;~~) is a decreasing function of ~ ard for ~ =

~~ ;

it is equal to 0.931.

Note that in ~2.45), is based on r—th order statistic and

R
5 

is based on the total life statistic with r - th failure .

(C) Selection procedure for distribution < ordered with respec t

to Weibull distribution

Assume tha t the specified distribution G(x) is given by
a

1 - e~~ 
X 

for x � 0
G( x ) =

. 0 for x < 0

14
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where ). >0  and attention is restricted to .-, ~ 1 which is

assumed known. In this case, we use r~ as our statistic where
3.

r-j
T* = ~ • 4 (n — r)X~ , i = 1, . . .
1 1~~),fl 1;r ,n

j=1

(as before, X. . denote the J-th order statistic from
I ;j,n

F. • i = 1 ,...,k) . Since G(x) is convex with respect to

the exponentia l distribu tion if 1 and since th~ convex

ordering is transitive , the fami ly  of di stribu t ions which ar e

convex with respect to Weibull (., ~ 1) will have IFR distrihu~T i : ~.

Thus our interest here is in a specia l subclass of IFR

distributions . The rule for selecting the population whi ch

is associa ted with Fpk, is as follows,

R
6
: Selec~ popula tion ~-r . if and only if

(2.46) T~ ~ c max T*
1 6 

1—j.k ~

where c6 (0< c6 ~ 1) is determined so as to satisfy the basic

probability requirement.

Using the fact that if F .- G and F ( 0 )  G ( 0 )  = 0 then

F .~ G for ~ ~
. I , where F is the c.d.f. of X~ , F ( x )  is the

~T c  ~
c.d.f. of X,G is the c.d.f. of ~a and G(y) is the c.d.f. of V . Also,

G
1
F ~~ ) is stochastically equivalent to the i-th order

• ft ‘~ 1, fl

statistic from G* (x) 1 - e 
X 

, for x > 0 , where x ...
• 1,n n ,n

are order statistics from F . in a manner similar to the proof

• •



~~~~~. -.-—- ,~~~~~~~~~~~~~~~~---—“- • - ..-~~~~~~~

of Theorem 2.1, one can prove the following theorem.

Theorem 2.5. If F.(x) ~~~~ Cx) ~fx and i = 1,... ,k

F
[k] 

(0) = 0 , F
tk] ~ 

G , G(x) = 1 - e~~~~ , x >0 , ~ >0 and ~ (~ 1)

is known and n>max tr , r i  
~ , 

then
6

(2.47) inf P~ CS~ R6’ 
= fH

k_ I
~(~~

_
dH (x)

0 6

where H(x) is the c.d.f. of a 2 random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations

Let r
~1
.... , t

k 
be k populations with densities

f. (x) = 
r(a~ ) 

C , x � 0 , ~ 0 , � 1 • i 1, . . . ,k -

Let F . (x) be the distribution function of ‘~~~. . i 1 ,...,k
.1. 1

We are given a sample of .s i ze n I ren t ~~teh .t . • I~ t I ’~~ he

tota l l i fe  statistic until r - th  failure from ii . . Let
3.

be the ordered values of ~ .‘s . We are

interested in selecting the population with the largest value
a.

(unknown). Since the mean of ‘~~~. is __L 
, selection of

[k] 1

the population with largest mean is equivalent to selecting

the population with largest value, . The subset selection

rule based on T. is:
1

R7
: Select population 11

1 
if and only if

- ~~~~
,.. 

• .
— 

... ~~~~~~~ ._z-_=-~~~ ————- .
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(2.48) T~ � C max T~3.

where c7 
(0— C

7
.- 1) is the largest value chosen to satisfy

• 
P[CS~ R7~ �P*

Since the rule R7 
is scale invariant, we can assume

Case 1: All 
~ 

are unknown and ~.l . Let

= = (
~ 1’~~~~

?1k
): 

~~~~

. ~ 1 ‘fi~ . In this case, by Corollary

• 2.2 and F. .~ 
G ( x ) = l _ e

_X 
, x � 0  , i l ,...,k we have

• i c

the following result.

If n > max [r,~~~~1 , then u -if P~CS~R7
] =

0 7

2
where H(x) is the c.d.f. of a v r.v. with 2r d.f.

Case 2: 
~~~

. are unknown but assume 1 
~~~~~~

. 

~ 
, i = 1,... ,k

and ~ is known.

Let F~~(X) be the c.d.f. of X with density function

• I A— 1 — x
f (x)  = 

r(~~) 
X e • x>0

Let H(x) be the c.d.f. of a ~2 r.v. with 2r d.f. and let h(x) be

its density function . The following theorem is the lower bound

for the probability of correct selection without arty condition on ri

Theorem 2.6.

(2.49) Pt CS~ R7);~ ~ ~~~~~~~ x) e~~ dx



-~ .-..--. -. ‘.-- 

~~~~~~~~~~~~~ 
_ _ _ _  

.-. 

•~~~
•
~

__

~~ 

-. .— 
____ 

—---
~~
—.

—1 -x
where y = F (1-e )

Proof. P[CS~ R7] 
= P[T~~~I .‘c 7 

max ~~~~~
l.cj�k—l ‘~~~~‘

where T~~ ) 
is associated with rt~~.]  i = 1,... ,k

Since F (x) <F . (x) ~ G(x) 
l_ e X

(2.50) P[CSIR 7] 
� P~T~* ~ C

7 
max
1 .

~ 
j <k —1

where T~* is the total life statistic until r—th failure

from G(x) and T *(j=l ,...,k_l) is the total life statistic

until r—th failure from F Cx)
• •

Since t~� l then F .< G . Let ~ (x) =G
’1F Cx)

(2.51) P~TJ~
* � C

7 ~~~ , j = 1,... ,k — 1] = F[~~(
1 T~*) �

T~ *) j 1,... ,k — I]

By Lemma 4.1 of Barlow and Proschan [5] with a1 ... = a
n

(n-r+l)c
a = • a . = 0 for i�r+1 and ~p (X) = Y where X(Y)
r n 1 St

is a r.v. with distrioution function F (G) respectively, we have

(2.52) P[~~(~ T~*) �cp (~~ 9*) , j l,...,k l ~ ~ Pt~p(
~ T*~ )

2. 
~~~~ , j = 1,... ,k—1]

• 2
where Y . (j=1 ,...,k—1) is a r.v. with ~ with 2r d.f.



—-._-_ —- . _ _ _

-
. From (2.50), (2.51) and (2.52), we have

P[CS~R7] - - ~ 11k~~~(~~ x)dB(x) , where B(x) P[~~(~ ~~~~ cx ]

Since e~(x) = .-~ n (l— F ~ (X)) , then ~ 
1(x) =F~

1(1— e 
X
) Thu s

B (x)  = PtT~ *~~~n ~p
1

( x )]  = H ( 2n ~ 
1
(x)) = Flt2n F~~~(1_ e

X)

Now dB (xJ 
= 
2nh(2n~~ e

_X 
where y = F 1

(l -e~~)

Hence ~ H~~~ (~~ x)dB (x) 
= j H~~~~(~~ x) 

2nh (2ny) e
_X

cix
0 

c7

• This completes the proof.

Let S denote the size of the selected subset. The

expected value of S when R
7 

is used is given by

k

(2.53) E(S~ R7
) 5’ P~T~ � c

7 
max T~]

i=1

Let C) ’ = (n l
,...,r

~k
): l~~ r,j <~ ~ i 1 ,...,k1 . For

since F (x) <F . (>:) .-G (x ) 1 — e
X 

, then

E ( S~ R7) < Ic P[T~* >c 7 
max T~*~
2~~j<k

where T~ * is the total life statistic until r—th failure

from F ( x ) and T**( j 2 ,...,k) is the total life statistic

until r—th failure from G(x) . Hence E(S~R7
) ~

k PCTt* > c7 
max T1~* ~ . Thus
2<j~k

(2.54) su~ E(S~ R7
) = Ic J HId (~~) dS (x)

-• • - •.
~~~~~~~• .~~ -
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2
where H ( x )  is the c .d .f .  of~~ n.y. with 2rd.f. and S(x) is the c.d.f.

of the total life statistic until r-th failure from F CX).
A

Remark 2.3. Ci) We can show that the lower bound for case 2 in

Theorem 2.6 is less than or equal to the lower bound for case 1.

(ii)  Now we are dealing with the problem in case 2. Let

j

C~ HId (~~_) dli (x) = P* • then C
7 

can be determined. If

n � max In, (r—l)/(l—c
7)1 , 

then we should use the lower bound

for case 1. If r < n < (r—l)/(l—c
7) , 

then the lower bound for

case 1 cannot be applied. In this case, we can use the lower

bound for case 2.

(iii) Sonetimes, the distribution function S(x) which

is defined above the remark 2.3 is hard to compute. From

E(SIR7) 
� kP [T~* � C

7 ~~~~ , j = 2 , . . ., k]  where

Tt* is the total life statistic until r—th failure from F and

T** ( j  = 2, . . . ,k) is the total life statistic until r—th failure

from G(x) . Using the similar arguments in the proof of

Theorem 2.6, we can get

E(SjR7) ~ 
k (‘~~ H

k l  
[
2n p

_l 
(l_ e ~~~)] c~H (x )

where 11(x) is the c . d . f .  of a 2 
r.v. with 2r d.f.

In this case , the upper bound of E ( S I R
7
) can be computed.

_- • . . •
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3. Selecting a best population - using indifference zone approach .

Let TTlS •~~~
SITk 

be k populations. The random variable

X. associated with i-i . has an absolutely continuous
1 1

• distribution F. . We assume there exists a F (x) such
1 tk]

that F . (x) ~-F~ (~~~
) for al l x • i = l ,...,k-l and

[‘1 6

6 (0< ~ ~ 1) is specified . Let

(3.1) ~ (6) = [F=(Fl....,
F
k
): aj such that F.(x) � F .(~~)” i #j }

The correct selection is the choice of any population which

is associated with F
tkl 

• . We propose the selection rule

R
8
: Select population rn . if and only if

(3.2) T. raax T . where T. is defined as in Section 1.2
1 

l’:j.~k ~ 
1

We want the P[cs~R8] ~ P* • for all F c ç~ , where

p* (~~
< P~~< 1) is specified .

Theorem 3.1. If F . E~~,G E Q ,i = l ,...,k

—l . —l
F .< G • G (0) ~ 0 , a . >0 , j=l ,...,r , gG (0) ~ ltk] c

and a ?6 , then
r

(3.3) P~CS~ R8J ~ j~ 
G
~~

1(
~
)dG

T
(x)



where GT (X ) is the c .d .f .  of T

Proof. PtCS~R8
] P~T~~~ � max T ( . ) ]

1~ j�.Ic ~

Since Ft .~~
(6x) � F~~~(x) , i 1 ,...,k—l and by

Lemma 2.1, then

T .
Pt CS~

R
Bl

PtT (k) 
>6 j~~k] > PCT (k ) >6 T~ V j#k]

where ~~~~~~~~~~~ , T (k) are i.i.d. with c.d.f. W
k
(x)

Using the same argument as in Theorem 2.1, we have our theorem.

Remark 3.1. inf P[CS~R8]= r G~~~
’(

~~
)dGT

(X ) if G 1
(0) =0

0

For given k, 8, P~ and G (x) , we can possibly find the

values of the pair (n,r) , (n�r) which satisfy

(3.4) ar >6 and 
~
_l

(o) 
G
~~

1(
~
)dG

T(x) > p*

If G(x) x for 0< x< 1 , we can always find the

values of the pair (n,r) • (n>r) which satisfy

( 1 ) s  [i~r ()()
i

( 
)n-i] l 

~ X)
n r

dX 2

If G(x) = l _ e X for x � O  , we can find the smallest

integer r , ~ay r0 • which satisfies



k-l x 2H (~~)dH ( x) >~~~~* where 11(x) is the c.d.f. of a
0
random variable with 2r d.f. Since a >1 if f n>~~--~

we can find the minimum n satisfying n~~max (r,~~~~)

4. Selection procedure for distribution .< ordered with respect to G
*

Let t(>0) be a given number. Let N . (t) he the

number of failures in time t of the total n units on life test

(without replacement) from rT which has a continuous distribution

F. , i 1,... k . We assume tha t

(4 .1) N .(t) � 1 , i = 1,.. .,k

and there exists a Frk](x) such that F.(x) �F
rk]

(x) for

a ll x , i = l ,...,k . The correct selection is the choice

of any population which is associated with F
tk] 

. Let T.

be the total life statistic uniti N. (t)—th failure from
1

population i-n . . Let T . be associated with F . . We
3. ( 1)

propose the rule

(4.2) IL: Select ,-r . e~ T. �c max T.
1 1 9 . 3l�j�k

where c9(0<c 9~~
l) is chosen so that PC CS~R9] 

�P*

Theorem 4 .1. If F. (x) �F
tk]

(x) y x , i 1 ,...,k and

F < G , then
tic] *
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(4.3) PtCSIR9~ ~
. 

~~ A~~
1(~~ )dA2

(x)

where A
1
(x)(A

2
(x)) is the c.d.f. of total life statistic until

n—th (first) failure from G , respectively.

Proof. From C 4.1), we have

PCCS~R9~ 
= PC

~~(k) 
�c

9 
max T(.)] >P[T~~�c 9T~ for j=l ,...,k-1J

where -
~~~~ is the sample mean of size n from Ft.] , i=l ,...,k-l

and is the first order statistic of size n from F
n C kJ

Let

n
(4.4) T** =~~~~

‘ 
X . for j=1 ,...,k—l

~ 4.~~l ~

where X
ji~ • •~~

sXjn 
are i.i.d. from F

tc] •

since F (x) >F (x) then ~~~~~~ > T’~ . Hence
tki J St J

(4.5) PtT~~>c 9T~ , j#k] > P t T~~>c9
T *  , j~~~k]

Let p ( x )  = G 1F
tk]

(x)

(4.6) PtT~~�C 9
T * . j#k] 

~~~~~~~~~~~~~~ 
�r ~~~~~ T~~*) ,  j#kJ

Since e~ is starshaped , then

T* T*
(4 7) (J .~• _JS~) .. •p (_i)

c n C a

By Lemma 3.1 of Barlow and Proschan t5], 

-~~~~~ - -~
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n
(4.8) 

‘r* 

rn C~ T~*) 
1 rp(X .~~)

NoLe tha t ~~~~(~~~~~~~) 
V where V is the first order statistic

n st k Ic

of size n from G and ep (X
3~~
) has distribution G

• t = 1 , . . ., ri . Let Y~ 
~ 

~~~~~ , j=1 ,...,k—l -

From (4.7) and (4.8), the right—hand side of (4.6) is greater

than or equal to

Pt
~~~

Y
k �

1Y . , 3 = l , . . . ,k - l ]

= 
~~~~ 

(nY~ ) > Y. ,

= r Ai d (~~~)dA (x )

~~~
l C

9 
2

This completes the proof.
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